Passa ai contenuti

Informazioni generali

Località: Hyderabad, Telangana, India 
ID del ruolo
210246
Tipo di dipendente
Intern - Temporary Employee
Studio/Reparto
CT - Data & Insights
Modalità di lavoro flessibile
On Site

Descrizione e requisiti

Electronic Arts crea esperienze di intrattenimento di livello superiore che ispirano giocatori e fan in tutto il mondo. Qui, tutti fanno parte della storia. Parte di una comunità che si connette in tutto il mondo. Un luogo dove la creatività prospera, vengono stimolate nuove prospettive e le idee contano. Una squadra in cui tutti possono giocare.

EA - Data & Insights, AI Analytics Engineering

Data Science Intern

Team: EA - Data & Insights, AI Analytics Engineering 
Type: Internship (Full-time during term)

About the Team

EA is a global leader in digital interactive entertainment. The EA - Data & Insights, AI Analytics Engineering team plans, builds, and ships enterprise-grade data platforms, integrations, and analytics that power faster decision-making, unlock revenue opportunities, and improve business performance. We partner closely with product, engineering, and analytics teams across EA to deliver trusted, actionable insights.

Role Overview

You’ll join a hands-on, fast-moving team to build data and ML solutions with an emphasis on Python and software craftsmanship. You’ll write clean, well-tested code; wrangle large datasets; engineer features; train/evaluate models; and help move prototypes toward production in collaboration with senior engineers and architects.

What You’ll Do

  • Build robust Python modules and notebooks for data ingestion, feature engineering, and model training (primarily with pandas, NumPy, and scikit-learn).
  • Author clear, maintainable code using OOP, type hints, docstrings, and unit/integration tests; participate in code reviews and follow Git-based workflows.
  • Explore datasets to define problem statements, create hypotheses, and conduct EDA with appropriate visualization and summary statistics.
  • Implement and evaluate baseline and advanced ML models; select metrics, design experiments, and apply cross-validation.
  • Apply solid SQL to extract/transform data; collaborate on building reliable data pipelines to support analytics and reporting use cases.
  • Communicate results with crisp narratives, dashboards/plots, and reproducible notebooks; translate findings into product and business recommendations.
  • Contribute to best practices in the team’s development lifecycle (automation, CI, documentation) and proactively suggest improvements.

Must‑Have Skills (Core Hiring Bar)

  • Python mastery for data work: pandas, NumPy, scikit‑learn; writing reusable functions/classes; debugging and profiling; packaging basics.
  • Strong coding fundamentals: data structures & algorithms, OOP, modular design, unit testing (pytest or similar), version control (Git), and code reviews.
  • ML & DS foundations: supervised learning (linear/logistic regression, trees/ensembles), regularization, bias/variance, cross‑validation, feature scaling/encoding, and model evaluation (AUC/ROC, F1, RMSE/MAE, calibration).
  • Statistics for data analysis: sampling, hypothesis testing, confidence intervals, distributions; ability to choose appropriate tests and interpret results.
  • Solid SQL for data extraction/joins/aggregations and working knowledge of query optimization basics, along with proficiency in Git (GitHub/GitLab workflows, branching, pushing, merging).
  • Data wrangling & EDA: handling missing/outliers, joins/pivots, time‑series/tabular transforms, clear visualizations (matplotlib/plotly) and narrative summaries.
  • Problem solving & ownership: ability to define the problem, design experiments, deliver incremental value, and document decisions.
  • Communication: concise written docs/notebooks and clear verbal explanations tailored to technical/non‑technical partners.

Good‑to‑Have Skills (Differentiators)

  • Cloud & data platforms: exposure to Snowflake/BigQuery/Redshift; familiarity with AWS or Azure basics (e.g., S3/Blob, compute, IAM concepts).
  • Pipelines & orchestration: experience with Airflow/Prefect or similar; understanding of batch vs. streaming concepts.
  • Software craftsmanship extras: Makefiles/poetry/pip-tools, pre‑commit, linters/formatters, logging & observability, simple CLI tools.
  • MLOps/productionization: model persistence (joblib/ONNX), reproducibility (seeds/environments), lightweight API serving (FastAPI/Flask), and tracking (MLflow/Weights & Biases).
  • Advanced ML: gradient boosting (XGBoost/LightGBM/CatBoost), time‑series forecasting basics, recommendation, Neural Networks and NLP fundamentals.
  • Big data: PySpark or Spark SQL for distributed transforms; understanding of partitioning and performance trade‑offs.
  • Visualization & storytelling: dashboards in Plotly Dash/Streamlit; crafting stakeholder‑ready summaries.
  • Competitive programming/problem-solving practice: experience with LeetCode, CodeChef, or similar platforms to strengthen algorithmic and coding proficiency.
  • Other languages: basic R or SQL dialects; familiarity with JVM/C++/Scala is a plus.


Su Electronic Arts
Siamo orgogliosi di avere un ampio catalogo di giochi ed esperienze, sedi in tutto il mondo e opportunità in tutta EA. Diamo valore a adattabilità, resilienza, creatività e curiosità. Dalla leadership che esalta il tuo potenziale alla creazione di spazi per l'apprendimento e la sperimentazione, ti incoraggiamo a fare grandi lavori e a perseguire le opportunità di crescita.

Adottiamo un approccio olistico per i nostri programmi di benefit, enfatizzando il benessere fisico, emotivo, finanziario, lavorativo e collettivo a sostegno di una vita equilibrata. I nostri pacchetti sono pensati per soddisfare le esigenze locali e possono includere copertura sanitaria, assistenza per la salute mentale, risparmi per la pensione, permessi retribuiti, congedi familiari, giochi gratuiti e altro ancora. Creiamo ambienti in cui i nostri team possono sempre dare il meglio in ciò che fanno.

Electronic Arts è un datore di lavoro che rispetta le pari opportunità. Tutte le decisioni di impiego sono prese senza tenere conto di razza, colore, origine nazionale, discendenza, sesso, genere, identità o espressione di genere, orientamento sessuale, età, informazioni genetiche, religione, disabilità, condizione medica, gravidanza, stato civile, stato familiare, stato di veterano, o qualsiasi altra caratteristica protetta dalla legge. In conformità con le leggi vigenti, prendiamo in considerazione anche i candidati qualificati con precedenti penali. EA rende inoltre disponibili strutture lavorative per persone qualificate con disabilità, come richiesto dalle leggi vigenti.